
Humboldtgymnasium Solingen
Subject work in grade Q1

TensorFlow
Representation of the principle

and application
on a self-chosen example

TensorFlow - Darstellung des Prinzips
und Anwendung an einem selbst gewählten Beispiel

Nathan Mossaad
Basic course Information Technology if1

Subject teacher: Mr. Pohler

School Year 2020/21
06.01.2021

Contents

1 Introduction 3

2 AI, ML, DL & NN 4
2.1 Stages of digital learning . 4
2.2 The first algorithm: "Hello World" 4

2.2.1 MNIST database and nodes 5
2.2.2 Individual layers . 5
2.2.3 Layer structures . 5

2.3 Training a model . 6
2.3.1 Understanding the results 6

3 The practical example with TensorFlow 7
3.1 What is TensorFlow? . 7
3.2 Structure . 8
3.3 Results . 9

3.3.1 Realtime output . 9
3.3.2 Graphical analysis . 10

4 Conclusion 13

A. Definitions of terms 14

B. Source code 15

References 17

Work Report 18

Deceleration 19

1 Introduction

Why is digital learning mainly in the form of artificial intelligence and machine
learning so talked about? The answer lies within how we humans perceive and
understand the world around us. As an example, if you see a digit like 8, you
can instantly understand it and categorize it no matter, how or from whom
it has been written. But how are computers supposed to recognize something
like this? The current best solution to this problem is machine learning and
its varieties. But how do we write a program that can recognize these digits
and give out the written digit from an image? 1

1Base on: [1]

3

2 AI, ML, DL & NN

Technical terms which are used in the following can be looked up in the section
“Definitions of terms”.

2.1 Stages of digital learning

There are four basic stages of digital learning. These are:

• AI - Artificial Intelligence

• ML - Machine Learning

• DL - Deep Learning

• NN - Neural Networks

In this paper I will focus on the last three, but first of all: What are they?
As seen in the image on the side, every higher stage or algorithm encases its
subarea.

Figure 1: Stages of digital
learning [2]

Artificial Intelligence is basically the equival-
ent to the human mind, able to apply the learned
to new, not seen before situations.
In Machine Learning the algorithm replicates
what it has learned prior to the application on a
similar situation.
In Deep Learning we try to create the struc-
tures of a brain and not only similar building
blocks, but entire interconnected “webs”.
Finally, Neural Networks try to mimic neur-
ons in a brain to create “similar” components
and hopefully create similar results2.

2.2 The first algorithm: "Hello World"

The easiest way to imagine these algorithms is in layers in which there are
neurons that are connected. As an example, we will take the "Hello World"
of machine learning: recognizing the digits 0 to 9. The MNIST database is a
great starting point to understand the basics.

2Source: [11]

4

2.2.1 MNIST database and nodes

Figure 2: MNIST database
sample images
[10]

Figure 3: Representation of
a Neural Network
[1]

The MNIST database is a collection of 70,000
handwritten letters that are 28 x 28 pixel images
together with the corresponding digits. As an in-
put to our neural network, we can take these im-
ages and split them up into single pixels. Those
can be fed into 784 nodes. These first nodes can
read the brightness value of the pixel as an input
and pass it on as an output.

2.2.2 Individual layers

This collection of first nodes is our first layer.
Each node except for the output nodes will be a
function that takes in values of the nodes from
the previous layer, processes them and calcu-
lates a new value that is passed onto the nodes
from the next layer. This layer does not have
to be similar to its predecessor, it just has to
have nodes with inputs and outputs, regardless
what the functions do or how many there are.
One possibility could be that a node takes the
value of five previous nodes and creates an av-
erage of the previous outputs. Usually these are
quite a lot more complex like taking in the afore-
mentioned values and multiplying these with so-
called weights. These are negative and positive
values with which the input is multiplied by.

2.2.3 Layer structures

The results then get summed up and the result is inserted into the sigmoid
function3

hθ(x) = 1
1 + e−x

which turns any numerical value into a number between -1 and +1. The bigger
the number the closer it gets to 1 and the smaller the value the closer it nears to
-1. This layer is then repeated multiple times, the more complicated the task

3Source: [9]

5

the more layers and nodes it will typically have. At the end of the chain the
output nodes in our example ten, will then do the final calculations. Usually
each has a value between 0 and 1, representing a percentage where each node
represents how probable it is for its node to be the desired outcome.

2.3 Training a model

How is the model now trained?
Even in simple examples like this one, there are thousands of weights. Basically
instead of reasoning and logic we just brute force it, similar to the concept of
evolution. At the beginning we can just select random values for the weights
and test it with multiple different values. Usually there are multiple hundred
iterations, so-called epochs. The most accurate (sometimes multiple) model is
then the winner of the epoch and is taken as a starting point for the next epoch.
Instead of taking random values, these are altered and then the same happens
as in the first epoch. The following epochs are doing the same as the second,
but typically doing smaller and smaller alterations to the weights, which in
the process are getting more and more accurate. Finally, after each epoch the
overall accuracy is evaluated. After training to a degree one is satisfied with,
the model is tested against examples, that it has not trained on.

2.3.1 Understanding the results

To get back to the MNIST database, there we have two sub databases, the first
containing 60,000 images as training data and the second containing 10,000
as evaluation data. There has to be separate evaluation data, because only
through never seen data the true accuracy can be evaluated.

In my simple tests I had an average accuracy of 98,56% after the 10th epoch on
the training data, but a 98,12% accuracy on the testing data. This discrepancy
can differ dramatically depending on multiple factors, especially with more
complex problems.

This means that there will be exponentially increasing processing power re-
quired to improve the model.

6

3 The practical example with TensorFlow

3.1 What is TensorFlow?

In this example I will use TensorFlow which according to the project’s website
“is an end-to-end open source platform for machine learning. It has a com-
prehensive, flexible ecosystem of tools, libraries and community resources that
lets researchers push the state-of-the-art in ML and developers easily build
and deploy ML powered applications.”4

Figure 4: Graphical Rep-
resentation of a
Tensor [6]

An array can have multiple dimensions, imagine
each as a spacial dimension converging from a
single point.

• The first dimension would than be a line,
a so-called vector: 1-axis tensor

• The second a surface, a so-called matrix:
2-axis tensor

• And the third a three-dimensional object
like a pen: 3-axis tensor

• Higher dimensions can’t be spacially com-
prehended

On the right at the bottom you can see a “rank-
4” tensor, with four dimensions. To further
visualize this, there are simply three individual
“rank-3” tensors, which make up this tensor.
But how does this differ from a simple node?
This structure enables TensorFlow to combine
lots of values etc. into one unified body to be
dealt with. It saves processing power, especially
in more complex models, with the downside of
added complexity and less flexibility. This of
course is an oversimplification and it is not possible for me to do it justice.5

In the following example I will use TensorFlow’s python-API together with
TensorBoard and run it with CUDA acceleration for increased performance.
The source code can be found in the section “B. Source code” and should run
on any GNU/Linux system with the required following dependencies: Python,

4From: [7]
5Source: [6]

7

TensorFlow, TensorBoard, matplotlib.

3.2 Structure

Figure 5: Sample Images
from the Fashion
MNIST database
[4]

After loading in all needed libraries and clearing
the data of previous runs, I first let TensorFlow
download the built-in MNIST fashion database.
MNIST fashion has an identical structure to the
aforementioned MNIST database. Instead of di-
gits there are more complicated images of cloth-
ing from Zalando, an online seller for clothing,
to be evaluated.6

After that I create four variables:

• The first two containing 60,000 images
with its appropriate labels

• The other two with 10,000 test images for
later evaluation of the model

To later categorize the digits, I created a list
with the corresponding names like “Dress” and
“Coat”. After bringing the brightness values of
the individual pixels into the range from 0 to 1
from the usual 0 to 255, by dividing them with
255, I display the first 25 images with their translated labels as seen on the
right.
After verifying that everything worked, I begin with setting up the required
layers. In this model I have three layers:

• The first being the input layer, which can take in an image with 28 x 28
pixels, flattened into 784 data points, which then are used as input for
the second layer.

• The second layer has 128 nodes and takes in the data of the first layer
and processes it.

• In the last layer, there are 10 nodes, which do the final calculations.
Each of them representing one of the digits from zero to nine and giving
a percentage of how probable it is, for it being the desired outcome.

After setting up the layers, the model can be compiled, which means given
over to TensorFlow with all needed information:

6Source: [4]

8

• The optimizer, that controls which weights are updated in which way

• The loss function, that measures how accurate the model is

• Finally the target metrics, that tell TensorFlow what the goal is, in our
case how accurate the model is

After that I set up the required logging directories and the log function for
TensorBoard to tell how the model changed over time. This then leads to
training where the raw training data, validation data together with the amount
of desired epochs and the logging function is given to train. In this example
there will be 10 epochs.
To finally know the accuracy after training, I just print it to the terminal and
finally start the TensorBoard web-server to analyze the results. The code is
based mostly on "Basic classification: Classify images of clothing"7 and "Get
started with TensorBoard". 8

3.3 Results

3.3.1 Realtime output

The first output simply states which version of TensorFlow is being used, here
it is version 2.4.0 released on the 14th December 20209.
The next visible output is the current epoch, followed by a progress-bar. The
progress-bar shows while running:

• The current step at the beginning of the line

• An estimated time for running the current epoch

• The current loss based on the training data while learning

• The current accuracy based on the training data while learning

After each epoch further information is given, with the values of epoch 10.
These are:

• The amount of run through steps, here 1875

• How long it took to run the epoch, here ≈ 12s

• How long the average step took, here ≈ 6ms/step

• How low the loss in the last step was while training, here ≈ 23,76%

• How high the accuracy in the last step was while training, here ≈ 90,96%

• How low the loss value in the last step was while training, here ≈ 33,89%
7Source: [3]
8Source: [5]
9Source: [8]

9

• How high the accuracy value in the last step was while training, here ≈
88,28%

The difference between loss and loss value as well as accuracy and accuracy
value lies within the different calculation methods. The first calculates how
probable the desired outcome is and the ladder how accurate the individual
output-nodes themselves are, without taking a collective average.
This than leads to a first evaluation, which outputs new information:

• How many steps there were, here 313

• The loss, here ≈ 33,89%

• The accuracy, here ≈ 88,28%

Then I ran a second evaluation with a more accurate result of ≈ 88,27999830245972%
to verify the automated results.
Finally, TensorBoard is stared and because as mentioned before, there was
continuous logging, there is data to see how the model changed over time.

3.3.2 Graphical analysis

0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9
0.91
0.92

-1 0 1 2 3 4 5 6 7 8 9 10

0.22
0.24
0.26
0.28
0.3
0.32
0.34
0.36
0.38
0.4
0.42
0.44
0.46

-1 0 1 2 3 4 5 6 7 8 9 10

Generated with TensorBoard: epoch loss; x-axis epoch, y-axis accuracy / loss

In these figures multiple of the aforementioned effects can be seen. First of
all a decline of improvement is clearly pronounced generation after generation.

10

This is due to a limit of how much improvement overall can be made. As this
nears 0, the remaining gets smaller and smaller with each generation. Also in-
teresting is that the accuracy on the training data is always improving, which
isn’t always the case with the testing data. This effect is especially pronounced
in the lightly colored raw data. This is due to the model, not being able to
train with unknown models, which is the point, it still averages an improve-
ment after multiple epochs. Similar the opposite happens when it comes to
the epoch loss which declines over time.

In the epoch distribution you can see what values are used in the weights of the
model. As the model evolves, it gets more accurate and creates less random
weights and more evenly spread out values. The values change less and less
overtime as the model matures. In the epoch distribution you can see what
values are used in the weights of the model. As the model evolves it gets more
accurate and creates less random weights and more evenly spread out values.
The values change less and less over time, as the model matures.

11

In the weight distribution, you can see how much the values from the weights
of the model change. As the model evolves, it gets more accurate which leads
to smaller adjustments. This can bee seen through the spikes getting smaller
and more spread out as the model matures.

12

4 Conclusion

If you have a prefabricated dataset it has become quite easy to build a model
that does what you want to do. It gets harder the more the model should
do. We are not near stages where an artificial intelligence is viable. Even
simple models may need hours of training to get great results. If this is then
multiplied by hundreds of times for huge models, it is fairly easy to run out
of processing power and small errors get multiplied hundreds or thousands of
times.
In short as long as everything is strongly curated and predefined, it is possible
for machine learning to do the job, but someone has to do these steps before
given this preprocessed data to an algorithm.
In the example of MNIST only 28 x 28 pixel images of number in black and
white and a brightness of between 0 and 1, can be given to the model for
evaluation.

Humanity is nowhere near the intelligence as science-fiction authors have pre-
dicted, like Genesis in the Terminator franchise.

13

A. Definitions of terms
node a single point in a model which takes inputs and creates a resulting output

layer a collection of nodes which together make up one sub-advancement

weight a value that can be tweaked in order to change the output of a node

model the main part of the program with which we can learn

step a single run of the model, after which the values will be changed

epoch a set amount of steps after which evaluation can occur

14

B. Source code

TensorFlow and tf.keras
import tensorflow as tf
TensorBoard requirements
import datetime
import os
Helper libraries for showing the image
import matplotlib.pyplot as plt

Get TensorFlow version
print("TensorFlow Version:" + tf.__version__)

Clear logs from previous runs
os.system("rm -r ./logs/")

Get the MNIST fashion database and load it
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

define the names corresponding to the numbers for later classification
class_names = [’T-shirt/top’, ’Trouser’, ’Pullover’, ’Dress’, ’Coat’, ’Sandal’,
’Shirt’, ’Sneaker’, ’Bag’, ’Ankle boot’]

prepare the images for training in range between 0 and 1
train_images = train_images / 255.0
test_images = test_images / 255.0

Show the first 25 images with the corresponding name
plt.figure(figsize=(10, 10))
for i in range(25):
plt.subplot(5, 5, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
plt.show()

Set up layers
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)), # Transforms to Layer
tf.keras.layers.Dense(128, activation=’relu’), # Layer with 128 Nodes
tf.keras.layers.Dense(10) # Layer with 10 Nodes, each one represents an out-
put
])

Compile the Model

15

model.compile(optimizer=’adam’, # Optimizer, how the model is updated
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
Loss function, measures how accurate the model is
metrics=[’accuracy’]) # Metrics, monitor training and testing steps

Train The Model
Set up the log directory for later analysis of the data
log_dir = "logs/fit/" + datetime.datetime.now().strftime("tensorboard_callback
= tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

Fit the model to the training data
model.fit(train_images, train_labels, epochs=10, # Give Model the informa-
tion to fit it
validation_data=(test_images, test_labels), callbacks=[tensorboard_callback]
add logging to monitor the Model
)

Evaluate Accuracy
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(’ \n Test accuracy:’, test_acc)

Load the TensorBoard Webserver
os.system("tensorboard –logdir=logs/ ")

strongly based on Tensorflow examples

16

References
[1] 3Blue1Brown. Simple neural network. 5th Oct. 2017. url: https://

youtu.be/aircAruvnKk?t=232 (visited on 30/12/2020).
[2] aimlmarketplace.com.What is the difference between AI,ML & DL. 22nd Dec.

2017. url: https : / / www . aimlmarketplace . com / read - ai - ml -
blogs/what- is- the- difference- between- ai- ml- dl (visited on
30/12/2020).

[3] Multiple authors. Basic classification: Classify images of clothing. url:
https://www.tensorflow.org/tutorials/keras/classification
(visited on 04/01/2021).

[4] Multiple authors. Fashion-MNIST. url: https://github.com/zalandoresearch/
fashion-mnist (visited on 04/01/2021).

[5] Multiple authors. Get started with TensorBoard. url: https://www.
tensorflow.org/tensorboard/get_started (visited on 04/01/2021).

[6] Multiple authors. Introduction to Tensors. url: https://www.tensorflow.
org/guide/tensor (visited on 04/01/2021).

[7] Multiple authors. TensorFlow Hompage. url: https://www.tensorflow.
org/ (visited on 04/01/2021).

[8] Multiple authors. TensorFlow Releases. url: https://github.com/
tensorflow/tensorflow/releases (visited on 04/01/2021).

[9] Multiple authors. The sigmoid function. 25th Dec. 2020. url: https://
en.wikipedia.org/wiki/Sigmoid_function (visited on 30/12/2020).

[10] Josef Steppan. MnistExamples. 14th Dec. 2017. url: https : / / en .
wikipedia.org/wiki/MNIST_database (visited on 30/12/2020).

[11] Akmel Syed. AI vs. ML vs. DL (vs. NN). 20th Dec. 2020. url: https:
//medium.com/a-coders-guide-to-ai/ai-vs-ml-vs-dl-vs-nn-
f6968db769d1 (visited on 02/01/2021).

17

https://youtu.be/aircAruvnKk?t=232
https://youtu.be/aircAruvnKk?t=232
https://www.aimlmarketplace.com/read-ai-ml-blogs/what-is-the-difference-between-ai-ml-dl
https://www.aimlmarketplace.com/read-ai-ml-blogs/what-is-the-difference-between-ai-ml-dl
https://www.tensorflow.org/tutorials/keras/classification
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.tensorflow.org/tensorboard/get_started
https://www.tensorflow.org/tensorboard/get_started
https://www.tensorflow.org/guide/tensor
https://www.tensorflow.org/guide/tensor
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/tensorflow/tensorflow/releases
https://github.com/tensorflow/tensorflow/releases
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/MNIST_database
https://medium.com/a-coders-guide-to-ai/ai-vs-ml-vs-dl-vs-nn-f6968db769d1
https://medium.com/a-coders-guide-to-ai/ai-vs-ml-vs-dl-vs-nn-f6968db769d1
https://medium.com/a-coders-guide-to-ai/ai-vs-ml-vs-dl-vs-nn-f6968db769d1

Work Report

Date Time Activity

15.11.2020 17:15 - 18:05 Subject formulation
27.11.2020 16:30 - 17:50 Writing the Structure
28.12.2020 08:30 - 14:25 Research
29.12.2020 08:30 - 15:35 Research
30.12.2020 08:30 - 13:50 Program development
30.12.2020 08:30 - 15:15 First testing
02.01.2021 08:30 - 15:05 Finalizing program
03.01.2021 08:30 - 14:45 Writing
04.01.2021 08:30 - 13:55 Writing
05.01.2021 08:30 - 15:20 Writing
06.01.2021 08:30 - 12:35 Finishing touches

18

Deceleration

I ensure that I have written the paper independently, that I have not used any
sources or aids other than those indicated, and that any passages in the paper
that I have taken from other works, either verbatim or in spirit, have been
marked as borrowed, indicating the source in each case.

Ich versichere, dass ich die Facharbeit selbstständig verfasst, dass ich keine
anderen Quellen und Hilfsmittel als die angegebenen benutzt und die Stellen
der Facharbeit, die ich anderen Werken im Wortlaut oder dem Sinn nach ent-
nommen habe, in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Solingen, den 06. Januar 2021

Nathan Mossaad

19

	Contents
	1 Introduction
	2 AI, ML, DL & NN
	2.1 Stages of digital learning
	2.2 The first algorithm: "Hello World"
	2.2.1 MNIST database and nodes
	2.2.2 Individual layers
	2.2.3 Layer structures

	2.3 Training a model
	2.3.1 Understanding the results

	3 The practical example with TensorFlow
	3.1 What is TensorFlow?
	3.2 Structure
	3.3 Results
	3.3.1 Realtime output
	3.3.2 Graphical analysis

	4 Conclusion
	A. Definitions of terms
	B. Source code
	References
	Work Report
	Deceleration

